
Testing remote access to e-resource with CodeceptJS

Abstract:

At the Badische Landesbibliothek Karlsruhe (BLB) we offer a variety of e-resources
with different access requirements. On the one hand, there is free access to open
access material, no matter where you are. On the other hand, there are e-resources
that you can only access when you are in the rooms of the BLB. We also offer e-
resources that you can access from anywhere, but you must have a library account
for authentication to gain access. To test the functionality of these access methods,
we have created a project to automatically test the entire process from searching our
catalogue, selecting a hit, logging in to the provider’s site and checking the results.
For this we use the End 2 End Testing Framework CodeceptJS.1

by Ralf Weber

Introduction and Motivation

The Badische Landesbibliothek Karlsruhe (BLB)2 offers their users a variety of e-
resources with different access possibilities. Some of these are freely accessible, but
many require a login with username and password to ensure that you are a user of
the library. In the BLB we use Shibboleth3 to login. The procedure is always the
same: the user usually selects the library as an institution and identifies himself with
his user number and password. However, the implementation on the individual
portals is not always obvious and often there are functional problems; sometimes
access to a source that is actually licensed is denied. From time to time we get
feedback from users about problems, but many don’t report them because they
suspect the problem to be their own. Therefore we thought about the possibility of
automatically testing selected sources for their correct operation by mapping the
complete workflow of information retrieval. For instance:

• Search for a specific term in the OPAC

• Expecting to find a specific match

• Login as user

• Access to the full text at the provider

By automating these processes, we hope to discover problems or errors in access to
the full text in order to react promptly and correct the error as quickly as possible,
either on our side or by contacting the provider.

1 https://codecept.io/
2 https://www.blb-karlsruhe.de/
3 https://www.shibboleth.net/

What is CodeceptJs? Why did we choose this framework?

CodeceptJS is a modern end to end testing framework with a special behavior-driven
development (BDD) style syntax for NodeJS. The tests are written as a linear
scenario of the user’s action on a site.

It abstracts browser interaction to simple steps that are written from a user
perspective. A simple test that verifies that “Welcome” text is present on a main page
of a site will look like this:

CodeceptJS passes execution commands to helpers. Depending on what you intend
to test, you choose one of the helpers. In our case, we do not need cross-browser
support, we are simply interested in faster testing and therefore chose the Chrome-
based Puppeteer Helper.

Writing the tests for our scenarios can be done by librarians with little to no
knowledge of programming. CodeceptJS is simple to use and tests are written from a
user’s perspective. There is an actor (represented as I) which contains actions taken
from helpers. A test is written as a sequence of actions performed by an actor. Here’s
an example:

It’s readable and simple and works using the Puppeteer API.

Since our tests are always more or less similar, we decided to create a template that
can be used as a basis for each query. CodeceptJS allows us to store often used
interactions like common locators and methods in “page objects.” This way the code
can be made even more simple and readable. For example, we have created a
module to login with Shibboleth in which the access data of a test user is stored,
saved as shibboleth.js:

So for the whole login process, in the test file you only have to enter

Or, if it is necessary to switch to the next tab in the browser

We have created a second module, search.js, which contains all further interactions
regarding the search for a hit and the access to the full text at the provider. This is
best explained using an example.

Hands On – A practicle example

A simple example

If there are no special features necessary, a simple test proceeds as follows:

• Load start page of the OPAC

• Log in via Shibboleth

• Search a chosen title by ID

• Check if title matches expected title

• Click on link to full text

• Log in again

• Test for a text you expect to see at the provider

You can try this live:

• Go to https://rds-blb.ibs-bw.de/opac/

• Search for the id 1668499266

• We expect in our test the title “Die Angezählten” to be there.

• Now we click on the link to the full text (“zum Dokument”)

• Now, as you are not able to login, your journey ends on the Shibboleth
Login page

• But in our test, we automatically login and then expect to see the text
‘Lesen’ on the page from the provider

This is a screenshot what the page from the provider looks like after successful login

You can see the text “Lesen”.
The test itself looks like this:

Each line corresponds to one of the instructions listed above

As the identifiers (CSS/XPath) for the search string and the title in the result list are
always the same, you only have to specify their values, so no further CSS/XPath
rules are necessary.

In the search.js file these functions look like this:

In summary, a librarian writing a simple test only needs to take this template and
adjust three things:

1. the values for the Id to be searched
2. the value of the expected title in the result list
3. the text that can only be seen on the provider’s site after successful login,

including the (CSS/XPath) identifier that he gets with Firefox/Chrome
DevTools.

The test gets called by the following command:

The test gets called by the following command:

The output looks like this (green when everything is fine, red on errors)

Troubleshooting and Limitations

Normally the tests run as shown in the example above, with no problems.

We have found that it makes sense to take a “break” between the individual steps.
Otherwise the test may fail because the page is not yet completely loaded and
access to the DOM will not succeed. CodeceptJS offers the command wait(seconds)
for this. This ensures that the page is loaded and the complete DOM is available
before the next test starts. We use this extensively. The test runs longer, but that
doesn’t matter.

We also wanted to avoid recording these test accesses in statistics. CodeceptJS
offers MockRequest for this.
This helper allows you to use mock requests while running tests, so you can block
calls to 3rd-party services like Matomo, Google Analytics etc.

These calls are also integrated in the functions

Some sites expect the consent of the privacy policy, which appears in a pop-up window.
Access to this was not possible with CodeceptJS via the DOM. But we could solve this by
setting the required cookies manually. CodeceptJS also provides a simple method for this:

Fortunately, these cookies do not have to be created each time but can be loaded
with fixed values directly from the test file. Therefore no further work or preparation is
necessary and these tests can be started by cronjob without problems too.

On some pages you have to select the institution from a dropdown list, sometimes
this happens dynamically via AJAX. CodeceptJS is well equipped for this also as you
can see here on these examples4:

To make sure that there are no temporary network problems or other technical
failures, we optionally run each test three times. CodeceptJS offers the possibility of
RetrySteps5.
You simply append the function retry(amount) to the scenario.

The execution is only repeated if the test has failed, very nice!

There is one thing we have not yet been able to solve.
There’s a provider who requests a ReCAPTCHA in addition to the login. Maybe we
can think of a solution for this in the future.

4 https://codecept.io/acceptance/#filling-fields
5 https://codecept.io/basics/#retry-step

Conclusion

Meanwhile our tests are running productively and automated. We only run them from
off campus, because if they work there, they also work inside the rooms of the library.
For a better organization we have divided them into three groups: database, e-book
and e-journals. At the time of writing, we have 83 tests and more will be added.

We have set up a cronjob for each group which calls up the test files once a month,
with the result is logged and sent by e-mail to the responsible employees.
Additionally, we have activated the Allure plugin CodeceptJS.cThis is a reporting tool
that shows a representation of what has been tested in a web report form.

This allows details of the tests to be tracked, and in case of an error there is a
screenshot, which often makes troubleshooting extremely easy.

Now that we have been in the production phase for a few months, we can say that
we have achieved what we wanted. We can automatically control whether external
access to full text works or not, we notice long response times on the part of the
providers and can ask them to improve. We can better understand the problems of
the users to reach the full text, because now we have to write the whole process as a
test. Here we can see how complex the user guidance is. And we notice changes to
the user interface of the website on the part of the provider, because then our tests
fail, which fortunately is not often.

About the Author

Ralf Weber is the Information Technologies Librarian at the Badische
Landesbibliothek Karlsruhe.
He cares and develops tools for automation of library workflows and for new services
within the context of the library.

